Dynamics of non-local systems handled by fractional calculus
نویسنده
چکیده
Mechanical vibrations of non-local systems with long-range, cohesive, interactions between material particles have been studied in this paper by means of fractional calculus. Long-range cohesive forces between material particles have been included in equilibrium equations assuming interaction distance decay with order α . This approach yields as limiting case a partial fractional differential equation of order α involving space-time variables. It has been shown that the proposed model may be obtained by a discrete, mass-spring model that includes non-local interactions by non-adjacent particles and the mechanical vibrations of the particles have been obtained by an approximation fractional finite difference scheme already used for static analysis. Modal shapes and natural frequency of the non-local systems may then be obtained from the proposed model with boundary conditions coalescing with classical mechanics boundary conditions and solution obtained with the proposed model is capable to capture local characters as particular case of the real coefficient α . Numerical applications reported show a remarkable non-local feature of the state variables of the analyzed system. Key-Words: Non-local interactions, Long-range forces, Fractional calculus, Non-local dynamics, Eigenproperties.
منابع مشابه
Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملYang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کامل